Generalization Bounds for Averaged Classifiers
نویسندگان
چکیده
We study a simple learning algorithm for binary classification. Instead of predicting with the best hypothesis in the hypothesis class, that is, the hypothesis that minimizes the training error, our algorithm predicts with a weighted average of all hypotheses, weighted exponentially with respect to their training error. We show that the prediction of this algorithm is much more stable than the prediction of an algorithm that predicts with the best hypothesis. By allowing the algorithm to abstain from predicting on some examples, we show that the predictions it makes when it does not abstain are very reliable. Finally, we show that the probability that the algorithm abstains is comparable to the generalization error of the best hypothesis in the class.
منابع مشابه
Generalization error bounds for classifiers trained with interdependent data
In this paper we propose a general framework to study the generalization properties of binary classifiers trained with data which may be dependent, but are deterministically generated upon a sample of independent examples. It provides generalization bounds for binary classification and some cases of ranking problems, and clarifies the relationship between these learning tasks.
متن کاملChromatic PAC-Bayes Bounds for Non-IID Data: Applications to Ranking and Stationary β-Mixing Processes
PAC-Bayes bounds are among the most accurate generalization bounds for classifiers learned from independently and identically distributed (IID) data, and it is particularly so for margin classifiers: there have been recent contributions showing how practical these bounds can be either to perform model selection (Ambroladze et al., 2007) or even to directly guide the learning of linear classifie...
متن کاملChromatic PAC-Bayes Bounds for Non-IID Data: Applications to Ranking and Stationary \beta-Mixing Processes
Pac-Bayes bounds are among the most accurate generalization bounds for classifiers learned from independently and identically distributed (IID) data, and it is particularly so for margin classifiers: there have been recent contributions showing how practical these bounds can be either to perform model selection (Ambroladze et al., 2007) or even to directly guide the learning of linear classifie...
متن کاملA Note on the Generalization Performance of Kernel Classifiers with Margin
We present distribution independent bounds on the generalization misclassification performance of a family of kernel classifiers with margin. Support Vector Machine classifiers (SVM) stem out of this class of machines. The bounds are derived through computations of the Vγ dimension of a family of loss functions where the SVM one belongs to. Bounds that use functions of margin distributions (i.e...
متن کاملCombinatorial generalization bounds
In this paper we propose a new combinatorial technique for obtaining data dependent generalization bounds. We introduce a splitting and connectivity graph (SC-graph) over the set of classifiers. In some cases the knowledge of this graph leads to an exact generalization bound. Typically, the knowledge of a little part of the SC-graph is sufficient for reasonable approximation of the bound. Being...
متن کامل